
--- SPACE RESEARCH COORDlNATiON C E N T E d  

-2 ' THE CORRESPONDENCE PRINCIPLE IN 

INELASTIC SCATTERING G. 

BY 

I; J, D. GARCIA i 
DEPARTMENT OF PHYSICS 

GPO PRICE $ 

I 
CFSTI PRICE(S) $ 

'1.. 

-3 .yI -.. 

Microfiche (M F) 

ff 653 July 66 i 

4 UNIVERSITY OF Pl lTSBURGH 

PITTSBURGH, PENNSYLVANIA 

8 DECEMBER 1966 

- 
a 
ti /I / 

(kODE) 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

The Correspondence Principle i n  Ipe last ic  Scattering 

J .  D.  Garcia 

This technical report embodies mx?arch sponsored by the National 

Aeronautics and Space Administration under Contract number NGR-39-011-035 

t o  the University of Pittsburgh, Principal Investigator Edward Gerjuoy. 

I 
I 
I 
I 
I 

Reproduction i n  whole or i n  part i s  permitted for any purpose of the 

United States Government. 



Ab s t r a c t  

Ionizat ion of hydrogen by e lec t rons  i s  examined f o r  t h e  case of 

high incident  e lec t ron  energies. 

t o  approach the  c l a s s i c a l  expression i n  t he  l i m i t  of l a rge  p r inc ipa l  

quantum numbers. The energy dependence of t he  cross  sec t ion  a t  high 

The Born quantum cross sect ion i s  found 

energy i s  discussed; it i s  expected t h a t  t h e  cross sec t ions  go smoothly 

from E lop; E 1 
E t o  -behavior  as n becomes la rge .  
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I. INTRODUCTION 

There have been a number of recent dealing with 

c l a s s i c a l  models f o r  i n e l a s t i c  c o l l i s i o n s  ; most of  t hese  concern t h e  

Gryzinskil  b inary  encounter model. 

quantum and c l a s s i c a l  cross sections d i f f e r  i n  t h e i r  high energy be- 

havior ,  t h e  na ture  of  t h e  r e l a t ionsh ip  has not  been ca re fu l ly  explored. 

That they should be in t imate ly  r e l a t e d  i s  suggested by t h e  equa l i ty  of  

t he  quantum and c l a s s i c a l  e l a s t i c  coulomb cross sec t ion .  Section I1 

shows t h a t  t h e  c l a s s i c a l  d i f f e r e n t i a l  cross sec t ion  and t h e  quantum 

cross  sec t ion  f o r  ion iza t ion  i n  the  binary encounter approximation are 

r e l a t e d  simply. 

two expressions i n  t h e  l i m i t  of l a r g e  p r i n c i p a l  quantum numbers. 

consequences of t h i s  correspondence are discussed. 

Though it is  of ten  s t a t e d  t h a t  t h e  

Section 111 i l l u s t r a t e s  t h e  correspondence between t h e  

Some 

11. HIGH ENERGY CROSS SECTIONS 

We consider t h e  ionihing c o l l i s i o n  of an e l ec t ron  w i t h  a hydrogen 

atom. I n  a c l a s s i c a l  ana lys i s  of t h e  problem, t h e  b inary  encounter model 

of Gryzinski proceeds by finding f irst  t h e  c ross  sec t ion  f o r  energy ex- 

change i n  t h e  labora tory  frame between two moving charged p a r t i c l e s .  We 

quote t h e  r e s u l t 7  f o r  t h e  d i f f e r e n t i a l  cross sec t ion  f o r  energy exchange 

AE and momentum t r a n s f e r  K ,  averaged over tu1 i s o t r o p i c  d i s t r i b u t i o n  of 

t a r g e t  e lec t ron  d i r ec t ions  

(Atomic u n i t s  are used throughout. This expression i s  then i n t e g r a t e d  

over a l l  allowable momentum t r a n s f e r s  and all AE frcm t h e  ion iza t ion  

1 
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energy up t o  the  incident  energy E The model thus assumes t h a t  t h e  1' 

c o l l i s i o n  i s  such t h a t  only t h e  i n t e rac t ion  between the  two e lec t rons  

i s  important i n  determining the cross  sec t ion .  The r e su l t an t  t o t a l  cross 

3 $ 4  1 sec t ion  i s  p ropor t ix i a i  5 0  f o r  l a r g e  El. 

The cor?espondir.g ;mntum mechanical result fo r  high energy in-  

cident e lec t rons  can be obs&ined ~y considering the Born approximation. 

I n  t h i s  limit t h e  sca t t e r ing  amplitude f o r  i on iza t ion  i s  8 

-A A '1 

0 
where 1 i s  t h e  s c a t t e r e d  electron,  2 i s  t h e  e j ec t ed  e lec t ron ,  K = k 

i s  t h e  momentum t r a n s f e r  vector,  k 

e lec t ron  momentum. 

- k 
2 

t he  i n i t i a l ,  2' t he  f i n a l  inc ident  
0 

8 is  the e jec ted  e l ec t ron ' s  momentum, whose i n i t i a l  

respect ively.  This amplitude, 
0' J,dQ ' and f i n a l  s t a t e  a re  described by J, 

i n  t he  case of hydrogen where U = - , i s  seen t o  be merely a f r e e  
12 

?%?-title coulomb amplitude mult ipl ied by a "form fac tor"  associated with 

r 

t h e  bound s t a t e  descr ipt ion.  I n  Eq. ( 2 )  it is  presumed ( so  as t o  cor- 

respond t o  t h e  c l a s s i c a l  presumption) t h a t  t h e  e lec t rons  a re  dis t inguish-  

able, i . e . ,  t he  wave function has not been an t i symet r i zed .  

The d i f f e r e n t i a l  cross sec t ion  i s  (assuming -- as w i l l  general ly  

be t h e  case -- tha t  a f t e r  in tegra t ing  over dil 

depend on azimuth of k 

t he  expression w i l l  no t  2 '  
A '  r e l a t ive  t o <  ) 

0 

It is now easy t o  see  tha t  the c l a s s i c a l  value i s  i d e n t i c a l  t o  (3 )  i n  t h e  

l i m i t  t h a t  
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6 ( J K 2  + g2 - 2 K x  cos; - v2) . ( 5 )  
- 1 - -  

2 4nv2 

2 A 

f.3 i s  the  angle betw er? K and be. ( 5 )  used i n  (3) and in t eg ra t ed  

dQ2 = 2minBdB , together w i t ? ,  e-??*--c?. conservation 

o r  

gives 

2 AE = 1/2 kz - 1/2 k t 2  = - E2 + 1/2 2 

dAE = g d x  

2a dK dAE do = - 2%- 
which i s  i d e n t i c a l  with (1). 

full conservation of  momentum and energy between t h e  two e l ec t rons ,  

whereas the  quantum mechanical approximation i n s i s t s  only on energy 

Gryzinski 's c l a s s i c a l  approach requi res  

conservation because t h e  nucleus can t ake  up momentum. However, i n  

the  l i m i t  when ( 5)  i s  t r u e  , an averaged momentum conservation follows. 

"hat only t h e  magnitude IK - &!I i s  involved i n  t h e  conservation of 
2 2  

momentum i s  a consequence of t he  averaging over t h e  atomic e l e c t r o n ' s  

angular d i s t r ibu t ion .  

The high energy behavior i s  obtainable from ( 3 )  by noting t h a t  
2 4  

f o r  very l a rge  E K m u s t  be small; thus  e iK'*r 2, 1 + i K * r  can be used 1, 

i n  ( 4 )  , y ie ld ing  

1 E O x ( ~ ) l 2  3 K 2 I < O I Z ~ H > ~ ~  

This when used i n  (3)  can be readi ly  seen t o  l e a d  t o  Rn E/E behavior 

f o r  t h e  in t eg ra t ed  ion iza t ion  cross sec t ion .  
8 
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111. CORRESPONDENCE LIMIT 

The genesis of Equation ( 5 )  can be most e a s i l y  seen i n  t h e  ap- 

proximation t h a t  t h e  e jec ted  electron be describable by a plane wave 
& A  

. I n  t h i s  approxima- i8. o r  

rather than  a coulornj wav 'function : $& e 

t i o n  

i s  just t h e  square of the  Fourier transform of the  bound s t a t e  wave 

funct ion,  evaluated at q = K - k? 
constant term which now arises because of t h e  non-orthogonality of 

t h e  bound and f r e e  wave functions,  ( 6 )  a l s o  leads t o  a Iln E/E behavior 

i n  t h e  limit of small momentum t r a n s f e r  o r  high energy, where 

e 

4 4 2  

It can be seen t h a t ,  as ide  from a 

9 

2: 1 + i K 4 r .  i K . r  

For t h e  ground state t h i s  approximation gives:  

For exc i ted  s t a t e s  we would have addi t iona l  complications because of t h e  

d i f f e ren t  angular momentum s t a t e s .  However, t he  normalized momentum 

space w a v e  functions f o r  a given p r inc ipa l  quantum number averaged over 

a l l  angular momenta have been shown by Fockl' t o  be 

( 7 )  i s  

ence . 
qui res 

n 

t h e  correct  expression t o  use f o r  obtaining a c l a s s i c a l  correspond- 

This function becomes sharply peaked as n increases ,  i n  f a c t  ac- 

d e l t a  function behavior 11. . 
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Thus i n  t h e  approximation ~ g l i e d  by ( 6 ) ,  t h e  use o f  a d e l t a  function as 

i n  ( 5 )  i s  cor rec t  f o r  l a r g e  n. 

Actually,  f o r  any s t a t e ,  no approximations need be made t o  obtain 

t h e  exact E ( K )  i n  closed form. 
OW 

but  it can be argued t h a t  i t s  behavior i s  a t  least qua l i%at ive ly  t h e  same 

as t h a t  given by (7).  

f o r  nuclear charge Z # 1, t h i s  function a l so  becomes sharply peaked as. 

p = Z / a  decreases.12 The expression f o r  E 

i t s  bound state form t o  t h e  continuum form as n increases .  

8 The expression i s  not vely t ransparent ,  

For example, i f  we look at t h e  ground s t a t e  (IC) 

(K) should go smoothly from 
0 nbe 

Here by con- 

=inurn form we mean t h a t  t h e  nucleus i s  very far away so t h e  co l l i s ion  

w i l l  be ordinary e l a s t i c  electron-electron s c a t t e r i n g ,  f o r  which the  quantum 

mechanical ( e x a c t ) ,  Born, and c l a s s i c a l  cross sec t ions  are equal. 

If w e  accept t h e  va l id i ty  of  the Born approximation at s u f f i c i e n t l y  

high energy, t h e  above remarks imply t h a t  t h e  cross s e c t i o n ,  at a given 

energy which i s  l a r g e  compared t o  t h e  binding energy, should go smoothly 

from En E/E behavior t o  1/E behavior as n increases .  This follows s ince  

1 (1) produces a - behavior, and a l s o  represents  the  l i m i t i n g  ( f i x e d  
E 

energy) behavior of ( 3 )  as n increases,  whereas f o r  low n and l a rge  enough 

E ( the re fo re  small K) t he  crass s ec t ion  has log E /E dependence. This 

can be seen t o  be v e r i f i e d  by numerical ca l cu la t ions  of Omidvar. l3 

1 1 1  
H e  

p l o t s  both t h e  Born approximation and Gryzinski i on iza t ion  cross sec t ions  

f o r  n = 1 t h r u  5 ,  and finds tha t  f o r  t h e  higher n ,  t h e  Born and c l a s s i c a l  

agree at t h e  higher energies calculated.  O f  course, s ince  momentum 
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transfer decreases with increasing energy, we can f i n d  an inc ident  

energy such t h a t  t h e  logarithmic. behavior of t h e  Born approximation 

i s  v a l i d  f o r  any given n.  

1 4  ingly l a r g e r ,  

obtains 

However , t h i s  energy w i l l  become increas- 

and ir: tile limit t h e  logarithmic behavior no longer 

These results als:, ~ i ~ . l e  h _me insight, i n t o  the  problem of 

196 averaging over ve loc i ty  d i s t r ibu t ions  whi,h have been used i n  con- 

nection with t h e  Gryzinski model. I n  f a c t  what is appropriate i s  a 

weightfng of  t h e  d i f f e r e n t i a l  cross sec t ion  by I &  
t h e  f a c t  t h a t  t h e  bound s t a t e  momentum i s  uncertain requi res  a weight- 

i ng  of t h e  p robab i l i t y  of energy exchange at a given momentum t r a n s f e r ;  

t h e  logarithmic dependence follows from t h i s  uncer ta in ty .  For highly 

exc i t ed  s t a t e s ,  however, t h e  bound state momentum becomes sharply peaked, 

giving v a l i d i t y  t o  t h e  use of a d e l t a  function approximation f o r  an 

qveraged momentum conservation between t h e  two e lec t rons ,  as i n  t h e  

Gryzinski model, Restating t h i s  argument, t h e  e f f e c t  of t h e  nucleus 

becomes unimportant f o r  l a r g e  n ( t h e  parameter, it should be kept i n  

mind, is Z/n) , and f r ee  p a r t i c l e  descr ip t ions  become approximately va l id .  

( K )  I*. That i s ,  
n 8  

Extension of t hese  arguments t o  consideration of exc i t a t ion  

c ross  sec t ions  i s  less straightforward, 
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